Caveolin-3 and SAP97 form a scaffolding protein complex that regulates the voltage-gated potassium channel Kv1.5.

نویسندگان

  • Eduardo J Folco
  • Gong-Xin Liu
  • Gideon Koren
چکیده

The targeting of ion channels to particular membrane microdomains and their organization in macromolecular complexes allow excitable cells to respond efficiently to extracellular signals. In this study, we describe the formation of a complex that contains two scaffolding proteins: caveolin-3 (Cav-3) and a membrane-associated guanylate kinase (MAGUK), SAP97. Complex formation involves the association of Cav-3 with a segment of SAP97 localized between its PDZ2 and PDZ3 domains. In heterologous expression systems, this scaffolding complex can recruit Kv1.5 to form a tripartite complex in which each of the three components interacts with the other two. These interactions regulate the expression of currents encoded by a glycosylation-deficient mutant of Kv1.5. We conclude that the association of Cav-3 with SAP97 may constitute the nucleation site for the assembly of macromolecular complexes containing potassium channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SAP97 interacts with Kv1.5 in heterologous expression systems.

PDZ domain-containing proteins such as SAP97 and ZO-1 have been implicated in the targeting and clustering of ion channels. We have explored the interactions of these polypeptides with a cardiac voltage-gated potassium channel. Immunocytochemistry in cardiac myocytes revealed colocalization of SAP97 and Kv1.5, both at the intercalated disks and the lateral membranes. Transient transfection expe...

متن کامل

SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5.

The voltage-gated potassium (Kv) channel Kv1.5 mediates the I(Kur) repolarizing current in human atrial myocytes and regulates vascular tone in multiple peripheral vascular beds. Understanding the complex regulation of Kv1.5 function is of substantial interest because it represents a promising pharmacological target for the treatment of atrial fibrillation and hypoxic pulmonary hypertension. He...

متن کامل

Caveolin regulates kv1.5 trafficking to cholesterol-rich membrane microdomains.

The targeting of ion channels to cholesterol-rich membrane microdomains has emerged as a novel mechanism of ion channel localization. Previously, we reported that Kv1.5, a prominent cardiovascular K(+) channel alpha-subunit, localizes to caveolar microdomains. However, the mechanisms regulating Kv1.5 targeting and the functional significance of this localization are largely unknown. In this stu...

متن کامل

Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5.

RATIONALE Kv1.5 (KCNA5) is expressed in the heart, where it underlies the I(Kur) current that controls atrial repolarization, and in the pulmonary vasculature, where it regulates vessel contractility in response to changes in oxygen tension. Atrial fibrillation and hypoxic pulmonary hypertension are characterized by downregulation of Kv1.5 protein expression, as well as with oxidative stress. F...

متن کامل

Kv1.5 surface expression is modulated by retrograde trafficking of newly endocytosed channels by the dynein motor.

In this article we have investigated the mechanisms by which retrograde trafficking regulates the surface expression of the voltage-gated potassium channel, Kv1.5. Overexpression of p50/dynamitin, known to disrupt the dynein-dynactin complex responsible for carrying vesicle cargo, substantially increased outward K+ currents in HEK293 cells stably expressing Kv1.5 (0.57+/-0.07 nA/pF, n=12; to 1....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 287 2  شماره 

صفحات  -

تاریخ انتشار 2004